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TES Atmospheric Profile Retrieval Characterization:
An Orbit of Simulated Observations
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Abstract—We test the accuracy of our error analysis and re-
trieval performance by examining retrievals over an orbits’ worth
of simulated data covering a variety of atmospheric conditions. The
use of simulated data allows validation of the error analysis and
retrieval algorithm by comparisons to the true values. To demon-
strate typical results, two example retrievals are shown, along with
associated diagnostic information. Curtain plots display compar-
isons between the retrieved results, the true values, and the initial
guesses. The results show that the Tropospheric Emission Spec-
trometer (TES) retrieval algorithm is robust under a variety of
atmospheric conditions, that TES can improve on the a priori for
nadir species Tatim H2O, O3, and CO, and that the predicted er-
rors match well with the actual retrieved errors. The target scenes
(nadir, ocean, cloud-free) simulate conditions that are most easily
validated with real data, and comparisons of on orbit results can
be made with this baseline.

Index Terms—EOS-Aura, error analysis, infrared spectroscopy,
nonlinear estimation, simulation, Tropospheric Emission Spec-
trometer (TES).

I. INTRODUCTION

THE Tropospheric Emission Spectrometer (TES) on the
Earth Observing System Aura (EOS-Aura) platform mea-

sures thermal emission spectra of the Earth and atmosphere in
both nadir and limb viewing modes. Using spectrally resolved
emission/absorption features of atmospheric trace gases, the
TES experiment can determine the vertical abundance pro-
files of several species that are key elements in atmospheric
chemistry such as ozone, water vapor, carbon monoxide, and
methane. For a more complete TES overview, see Beer et al.
[1] and Beer [2]. This paper focuses on simulated TES nadir
observations over ocean in clear-sky conditions in order to
establish a reference for more complex cases. More complex
cases include scenes with clouds and/or land scenes. For cloudy
scenes, additional algorithms have been added to parameterize
the cloud height and optical depths as a function of frequency.
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Kulawik et al. [3] discusses how clouds affect the trace gas
retrieval error, sensitivity, and nonlinearity. Emissivity is also
jointly retrieved in TES land scenes and is parameterized as
a smoothly varying function of frequency. Propagation of
emissivity errors into trace gas retrievals has been calculated
and shown that these errors are small relative to the total error.

To demonstrate the algorithm results, examples of retrievals
will be shown from simulated spectra generated using model
atmospheric profiles sampled from the MOZART3 model [4],
[5]. These retrieval examples are simulated measurements from
a single TES orbit in order to test the algorithm response over
a range of latitudes, temperatures, and atmospheric conditions.
The MOZART3 vertical grid (on the order of 1 km) is finer
than any feature retrieved by TES, and has sufficient vertical
variability to test TES retrieval performance.

Use of simulated data allows validation of the retrieval algo-
rithm and the assumptions of the error analysis. The validation
of the error analysis is critical because this is the primary means
of assessing the performance and consistency of retrievals with
real data where the true state is not known. The error analysis
quantities are statistical and are tested using an ensemble con-
sisting of one orbit’s worth of TES retrievals. The error anal-
ysis assumes Gaussian statistics and either linearity or moderate
nonlinearity (as defined in [6]), and these assumptions are also
tested.

II. SINGLE-ORBIT TEST DESCRIPTION

A. Simulated Observations

The simulated observations are created by determining
the observation locations for one orbit, as described in
Section II-A1, simulating the true state for each observa-
tion, as described in Section II-A2, and simulating the radiance
from each true state, as described in Section II-A3.

1) Observation Locations: The ground track for one orbit
is shown in Fig. 1. This ground track was specifically selected
from the expected TES ground tracks in order to minimize land
surface scenes. The Xs are about 5 apart along the orbit track,
with observation 1 located nearest the South Pole.

2) True State Generation: The true atmosphere is taken
from a MOZART3 [5] simulation driven with WACCM [7]
meteorological fields for an October 2 day. The model atmos-
phere is representative of a present day distribution of chemical
constituents. This MOZART3 dataset has 24 h of data with
20-min temporal and 2.8 spatial resolution. The 52 pressure
levels range from 1000 to 0.1 hPa. The products used from
MOZART3 were surface pressure, CH , H O, O , CO , CO,
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Fig. 1. MOZART3 model for O at 422 hPa with TES nadir targets (X’s) for
a single orbit over-plotted. Observations 28 and 72 are labeled on this plot; the
results at these locations are highlighted in Figs. 2 and 3.

NO , and T . Surface temperature was set to the lowest T
level for both the initial guess and the true state (this will tend to
underestimate TES sensitivity, especially in the boundary layer).
The true state values were created from interpolation of the eight
nearest dataset values (in latitude, longitude and time) of the
MOZART3 dataset.

3) Simulated Spectra: The code to simulate the observed
spectrum calculates the radiative transfer iteratively through
an 86-layer atmosphere. The terms included in the radiative
transfer calculation are upwelling atmospheric emission, down-
welling, backreflected atmospheric emission, surface emission,
and reflected sunlight. Following this calculation, which is
on a frequency grid of 0.0004 to 0.0008 cm (depending
on the spectral region), the radiance is convolved with the
TES instrument line shape, then apodized with Norton–Beer
medium apodization [8] and sampled to a 0.06 cm frequency
grid. The absorption parameters used in the calculations were
pre-calculated using a line-by-line code [9], [10] and the
HITRAN spectroscopic database [11] which are calculated for
every 10 K and for each of the 86 atmospheric layers. The TES
forward model is described in more detail in Beer et al. [12]
and Clough et al. [13].

B. Retrievals

To retrieve the nadir atmospheric state from TES data in a
cloud-free scene with an ocean footprint, the following retrieval
steps are performed sequentially: T , H O, H O and T ,
O , CH , and then CO. Surface temperature is also retrieved in
all steps.

The initial individual temperature and water retrievals are ini-
tial guess refinements in preparation of a joint retrieval in step 3.
T and H O are retrieved first because they affect the retrieval
of every other species.

1) Inversion: Each retrieval step iteratively minimizes a
cost function using the Levenberg–Marquardt nonlinear least
squares algorithm [14], where the cost function chosen con-
siders both the spectroscopic fit over the spectral windows used

(discussed in Section B5) and our a priori knowledge of the
atmosphere. The cost function is

Cost function (1)

In the above equation, is the observed radiance (discussed
in Section II-A3), is the radiance at the retrieved state
and is calculated using the same radiative transfer code dis-
cussed in Section II-A3, is the data noise error discussed
in Section II-B2, is the retrieved state (related to the retrieved
quantities by a linear map), represents nonretrieved parame-
ters that affect the forward model, are the retrieved quantities,

is the constraint vector (in our case set to the initial state),
and A is the constraint matrix discussed in Section II-B3. Note
that . The retrieval is described in more detail
in Bowman et al. [14].

2) Measurement NESR: The noise that is added to the sim-
ulated radiances in the single orbit test is estimated from the
measured noise equivalent spectral radiance (NESR) from TES
thermal vacuum calibration, described in [15]. Table I gives the
bandpass frequency average of the modeled NESR expected for
clear sky nadir views with a surface temperature around 300 K
(this will tend to slightly overestimate polar noise) and for mod-
erate Norton–Beer apodization (which reduces the NESR by a
multiplicative factor of 0.665). These predicted NESR values
are used as the standard deviation of Gaussian noise added to
the simulated measurements after apodization, and the measure-
ment covariance used for inversion and error estimation. For this
exercise, the added noise for each spectral window is normal-
ized to have zero mean and standard deviation exactly equal to
predicted.

3) Constraints: Constraints were selected using the ap-
proach of Steck [16] and Kulawik [17], which select the
constraint based on minimizing the expected error over an
ensemble of retrievals, with the expected ensemble error de-
scribed by (4).

Since T and O have information throughout the atmos-
phere, a first derivative exponential-decay Tikhonov constraint
was used with a single strength parameter, described in [16].
The constraint strength was chosen using the initial guess Ja-
cobians for each target scene using a cost function equal to the
mean error between the surface and 10 hPa.

Since H O, CO, and CH have less than one degree of
freedom in parts of the atmosphere and/or throughout the
atmosphere, altitude dependent zeroth and first derivative
constraints were used for these species, with different weights
of the zeroth and first derivative throughout the atmosphere,
described in [17].

4) Initial State Generation: The initial guesses for all
species except ozone were created through averaging of the
true atmosphere. T and H O, which are expected to have
good initial guesses from metrology data, were created by
averaging in a small region about the target scene location:
all points within 2.8 latitude, 20 longitude, and 40 minutes.
CH , N O, and CO initial guesses were created by averaging
20 latitude bins.
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Ozone initial guesses were created from combinations of
URAP1 which covers pressures above 100 hPa and Harvard
ozone profiles for 1992 [18] which cover from the surface to
10 hPa. For every latitude location, all profiles from September
and October were found with 2 of that latitude and for all lon-
gitudes. If no profiles were found, the search latitude range was
increased. When profiles were found, the URAP and Harvard
profiles were separately averaged. Then the URAP and Harvard
profile averages were smoothly combined into a single profile
using log VMR/log Pressure interpolation.

The surface emissivity was set to sea water emissivity as mea-
sured by Masuda et al. [20] for both the initial states and the true
states.

5) Spectral Windows Used in the SOT: The spectral win-
dows are described in Worden [21]. These spectral windows
were selected to maximize the information content of a retrieval
given an expected a priori covariance from NCEP (for T and
H O) or MOZART3, data error, constraints, and atmospheric
sensitivities.

C. Error Analysis Used in the SOT

This section provides a brief description of the error anal-
ysis, which includes measurement, smoothing, and interfering
species error. For a more complete description, see Bowman
et al. [14].

The error analysis assumes that we are in an incrementally
linear regime, and that we could estimate our NLLS retrieved
result with a linear equation which uses complete knowledge of
the true state and radiance error vector [6], [21]:

(2)

where is the averaging kernel, is the a priori constraint
vector, is the true state, is the gain matrix, is the
measurement error, is the Jacobian matrix of the interfering
species, and b is the state of the interfering species. and
are calculated from the Jacobians of the retrieved species, the
constraint matrix, and the estimated radiance errors.

The estimated error covariance matrix is defined as

(3)

This error covariance can be calculated using (2)

(4)

where is the a priori covariance of the retrieved state, i.e.,
is the measurement

error covariance, and is the error covariance of the interfering
species. The square-root diagonal of (4) gives the “error bars”
commonly reported, and the various terms of (4) are helpful to
determine the sizes of the various error components. Equation
(4) is validated in the Results Section III-D.

1http://hvperion.gsfc.nasa.gov/Analversusis/UARS/ urap/home.html

Fig. 2. Retrieval results for a north mid-latitude case (case 28).

D. A Priori Covariances

The a priori covariances are created by computing covari-
ances with 1 days’ worth of MOZART3 data, separated into five
bins: North Polar (54 N to 90 N), North Midlat (18N to 54N),
Tropics (18S to 18N), South Midlat (18S to 54S), and South
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Fig. 3. Retrieval example for a polar target scene (case 72).

Polar (54S to 90S). The diagonal values for the covariance ma-
trices of T and H O are scaled to the NCEP uncertainty es-
timates,2 which is the assumed uncertainty of the TES initial
guess operationally.

2http://www.ncep.noaa.gov/.

TABLE I
BAND AVERAGE NESR VALUES USED FOR SIMULATED

MEASUREMENTS AND RETRIEVALS

Fig. 4. (a) Temperature true states. (b) Initial error. (c) Retrieval error. (a) True
stale data—cross section along TES orbit track: temperature. (b) True versus
initial guess along TES orbit track: temperature. (c) True versus retrieval along
TES orbit track: temperature, nadir.

III. RESULTS

A. Retrieval Example Plots With Corresponding Averaging
Kernels

Figs. 2 and 3 show individual retrieval results for a North
Midlatitude case (case 28) and a polar case (case 72). The left
plots show the retrieval profile along with initial guess, a priori,
true, and retrieval estimate [using (2)], which is usually directly
over the result. The right plots show the rows of the averaging
kernel which tell where the retrievals have sensitivity. The peak



1328 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 5, MAY 2006

Fig. 5. (a) Water true states. (b) Initial error. (c) Retrieval error. (a) True state
data—cross section along TES orbit track: H O. (b) True versus initial guess
along TES orbit track: H O. (c) True versus retrieval along TES orbit track:
H O Nadir.

shows where the information for the retrieved state is coming
from, the maximum tells what fraction of the retrieved value
comes from the data versus the a priori, and the curve width
shows the resolution. These are fairly representative results for
most nonpolar and polar target scenes, respectively.

Although the temperature improvement appears modest in
Fig. 2 due to the large dynamic range, it improves from about
3 K to about 1 K error. The averaging kernel shows that temper-
ature information is retrieved throughout the entire atmosphere
with the best resolution is between 0 and 5 km. The difference
between a priori (light dotted) and initial guess (dark dotted) can
be seen in the water retrieval, where the water refinement step
did very well except at the surface. The refinement result was
passed to the joint temperature/water retrieval which improves
on this. The water averaging kernel shows that we have informa-
tion from about 0 to 15 km with good resolution between about
0 and 8 km.

Fig. 6. (a) Ozone true states. (b) Initial error. (c) Retrieval error. (a) True state
data—cross section along TES orbit track: ozone. (b) True versus initial guess
along TES orbit track: ozone. (c) True versus retrieval along TES orbit track:
ozone, nadir.

The ozone retrieval shows the capture of large-scale features
but not the features less than 2 km. The averaging kernel shows
the resolution (full width, half maximum) cannot capture 2 km
features, as the resolution is about 8 km. The CO plot shows
information coming from 3 to 12 km but with less total infor-
mation than the other species. The retrieval shows a good match
in this region.

Fig. 3 shows retrieval results for a South Pole case (case 72).
T and H O have an initial guess very close to true, how-
ever the O displays some ozone depletion which was not ex-
pected by the initial guess. The retrieval captures the depletion,
but does not fully resolve the features because the resolution is
not fine enough (as seen in the averaging kernel plot). The polar
plots show similar information patterns to midlatitude, but with
somewhat less information overall. For example, water infor-
mation is between 2 and 8 km rather than 0–15 km, and CO has
information centered at about 6 km only.
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TABLE II
RADIANCE RESIDUAL STATISTICS

B. Curtain Plots of T , H O, and O

Curtain plots are a way to show all target scene results in a
few figures. Figs. 4–6 show results for T , H O, and O re-
trievals. The observation number is on the x axis and pressure
is on the y axis with color representing the data value. The first
plots [Figs. 4(a), 5(a), and 6(a)] show the variability of the true
state for each target scene and pressure. T , H O, and O all
show significant variability through the orbit. The second plots
[Figs. 4(b), 5(b), and 6(b)] show the difference between the ini-
tial state and the true state. The third plots [Figs. 4(c), 5(c), and
6(c)] show the difference between the retrieved state and the true
state. Figures (c) versus (b) show the extent of the improvement
of the retrieved state over the initial state. T , H O, and O
show significant improvement for the actual retrieved error over
the actual initial error.

C. Data Residual Results

The radiance residual mean and covariance (normalized to the
NESR) are important diagnostics. The residual mean is ideally
zero and the covariance is ideally 1, and without the additional
errors discussed below these should be exact, because the added
noise was normalized to an ideal distribution. Deviations from
this expectation are due to: 1) constraints in retrieved values due
to mapping and retrieval constraints, fitting to noise, interfering
species errors and 2) uncertainties resulting from instrument cal-
ibration, finite layer size, spectroscopy, and atmospheric inho-
mogeneity. List 1) are errors which could be encountered in this
simulated test, and list 2) are errors which are encountered with
real data only. The radiance residual mean and covariance are
shown in Table II. The radiance residual mean results are rea-
sonable except for CH which seems to be fitting noise due to
the small window size (0.66 cm ). The radiance residual co-
variance root-mean-square (rms) is close to 1.0 for O and CO,
and is 1.02–1.05 for the water/temperature step.

D. Error Analysis Validation

The TES error products, such as the final error covariance,
allow results to be used properly, either for assimilation into
global climate models, or to corroborate or refute particular the-
ories or trends. This section validates the error analysis for the
single orbit test by comparing predicted and actual errors.

Table III shows predicted and actual errors for some retrieved
quantities. This table, in many cases, validates the error analysis

TABLE III
PREDICTED VERSUS ACTUAL IMPROVEMENTS

for these averaged quantities. Note that the actual initial error is
computed by taking the square root of the covariance of (initial
guess—true state) for all targets. The actual final error is simi-
larly computed by doing the same for the (retrieval result—true
state). The predicted error is calculated using the same error
analysis we use on orbit, and is validated by comparing to the
actual error, a known quantity for simulated data.

The highlighted cases in Table III show cases where the actual
and predicted initials errors agree relatively well. These cases
show good agreement in the between the actual and predicted
retrieval errors. The nonhighlighted cases show cases where the
actual and predicted initials errors do not agree. However, these
cases show the consistency that when the actual initial error is
smaller than predicted, the actual retrieval error is smaller than
predicted and vice versa. For example, “Mean error (Strat)” for
H O predicts 31% error for both initial and final errors. How-
ever, the MOZART3 initial guess had only 1% error. It is not
unexpected, given this information, that the final actual error is
2%, not 31%.

The error analysis is further examined using the predicted and
actual errors in the retrieved profiles. The error analysis can be
validated with the following three conditions:

1) Error analysis is correct when all inputs are correct
2) Results are within a linear step of the true state
3) Inputs to the error analysis are correct
Fig. 7 is used to validate the above three conditions. In Fig. 7,

“- ” shows the error analysis that is used for TES operational
retrievals for each species averaged over this set of retrievals.
“—” shows the assumed initial a priori errors. The red “—” and
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Fig. 7. Comparison of actual error
(x s) h(x � x )(x � x ) i versus - predicted
error (� s) h(x � x )(x � x ) i where x is
calculated using (2). The agreement is quite good. The error bars
(- - -) are in general different because the actual initial error
(—)(x s) h(x � x )(x � x ) i and the predicted initial
error from climatology (—) (S ) differ.

“x” display the actual initial errors and retrieval errors, respec-
tively. Finally, shows the predicted errors using (2) using the
Jacobians at the retrieved state and all other inputs set at their
true values.

The agreement of and in Fig. 7 validates both conditions
1 and 2, since is the actual error, and is from the linear error
analysis (2) using the Jacobians at the retrieved state. The agree-
ment, in general, is quite good, except for some minor under

Fig. 8. Breakdown of actual errors, using (2), using true inputs from the single
orbit test. These plots show that TES’s dominant error is smoothing error [the
second error term in (2)]. The black dashed line (-��) shows the actual error
and the x’s show the mean error, hx �x i.

prediction in various places, and so conditions (1) and (2) are
validated for the profile results of the atmospheric retrievals.

The agreement of and - , the actual and predicted errors,
respectively, would validate condition 3. This agreement in gen-
eral is not as good. The disagreement occurs in locations where
the initial predicted and actual errors (the black and red solids
lines) do not agree. This highlights the dependency of the pre-
dicted errors on the a priori covariance through the smoothing
error.

Fig. 8 shows the error breakdown into measurement error,
smoothing error, and systematic error from interfering species.
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This figure shows that in all cases, TES is dominated by
smoothing error, which makes the predicted error highly
dependent on our knowledge of the a priori covariance
(note: the mean error is not subtracted out for the covariance
calculation).

The a priori covariance for T and H O is the MOZART3
covariance for 20 deg latitude bins scaled by the NCEP pre-
dicted errors, whereas the actual initial error is the true state
minus a zonal average around the true state. Fig. 7 shows the
discrepancy between the NCEP covariance and the actual initial
error used for the SOT test. There is no expectation that these
should match; the NCEP predictions were used for the predicted
error because that is what we expect with real data. Inasmuch as
these predictions are accurate, the TES error analysis with real
data will be accurate because of the validation of TES error anal-
ysis when inputs are correct.

IV. CONCLUSION

The TES retrieval algorithm demonstrates robust retrievals
over a wide range of atmospheric conditions as shown in
Figs. 4–6. There is improvement, on average, over the initial
guess for T , H O, and O , and CO [Table II, and Figs. 4–6,
panels (b) and (c)]. CH will be addressed on orbit, when the
spectroscopy can be assessed.

The sensitive regions where TES improves over the initial
guess of the atmospheric state for TES nadir observations are
as follows (see Fig. 7):

T : 900–100 hPa
H O: 800–200 hPa
O : 700–20 hPa
CO: 400–200 hPa
CH : 40–90 hPa

The actual and predicted errors agree very well (within
2%) when inputs to the error analysis are accurate (Fig. 7
and Table III, highlighted portions). When the error analysis
does not accurately predict the actual error, it was found to be
because the initial error was smaller or larger than expected
(Table III nonhighlighted portions, and Fig. 7), and because
TES errors are dominated by smoothing errors (Fig. 7). This
study highlights the importance of the initial atmospheric
uncertainty on the accuracy of the TES reported retrieval errors.

It is important to note that for data assimilation or compar-
isons to models and other measurements, such as sondes, the
smoothing error can be explicitly removed from the compar-
ison by substituting the measurement or model profile for the
true state in (2), [22], and [23]. The simulated results show that
the errors, after accounting for smoothing, are accurate under a
variety of atmospheric conditions.
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